Analyse de régression - Maîtriser l'art de l'analyse de régression prédire analyser décider
Fouad Sabry
Traducteur Nicholas Souplet
Maison d'édition: Un Milliard De Personnes Informées [French]
Synopsis
Qu'est-ce que l'analyse de régression Dans la modélisation statistique, l'analyse de régression est un ensemble de processus statistiques permettant d'estimer les relations entre une variable dépendante et une ou plusieurs variables indépendantes. La forme la plus courante d'analyse de régression est la régression linéaire, dans laquelle on trouve la droite qui correspond le mieux aux données selon un critère mathématique spécifique. Par exemple, la méthode des moindres carrés ordinaires calcule la ligne unique qui minimise la somme des carrés des différences entre les données réelles et cette ligne. Pour des raisons mathématiques spécifiques, cela permet au chercheur d'estimer l'espérance conditionnelle de la variable dépendante lorsque les variables indépendantes prennent un ensemble de valeurs donné. Les formes de régression moins courantes utilisent des procédures légèrement différentes pour estimer des paramètres de localisation alternatifs ou estimer l'espérance conditionnelle sur une collection plus large de modèles non linéaires. Comment vous en bénéficierez (I) Informations et validations sur les sujets suivants : Chapitre 1 : Analyse de régression Chapitre 2 : Moindres carrés Chapitre 3 : Théorème de Gauss-Markov Chapitre 4 : Régression non linéaire Chapitre 5 : Coefficient de détermination Chapitre 6 : Estimation des variables instrumentales Chapitre 7 : Biais des variables omises Chapitre 8 : Moindres carrés ordinaires Chapitre 9 : Somme des carrés résiduelle Chapitre 10 : Régression linéaire simple Chapitre 11 : Moindres carrés généralisés Chapitre 12 : Erreurs types cohérentes avec l'hétéroscédasticité Chapitre 13 : Facteur d'inflation de variance Chapitre 14 : Non linéaire Moindres carrés Chapitre 15 : Régression en composantes principales Chapitre 16 : Somme des carrés sans ajustement Chapitre 17 : Effet de levier (statistiques) Chapitre 18 : Régression polynomiale Chapitre 19 : Modèles d'erreurs dans les variables Chapitre 20 : Moindres carrés linéaires Chapitre 21 : Régression linéaire (II) Répondre aux principales questions du public sur l'analyse de régression. (III) Exemples concrets d'utilisation de l'analyse de régression dans de nombreux domaines. À qui s'adresse ce livre Les professionnels, les étudiants de premier cycle et des cycles supérieurs, les passionnés, les amateurs et ceux qui souhaitent aller au-delà des connaissances ou des informations de base pour tout type d'analyse de régression.
